A PHOTOGRAMMETRY-BASED HYBRID SYSTEM FOR DYNAMIC TRACKING AND
MEASUREMENT

THESIS

Daniel P. Magree, Civilian
AFIT/GAE/ENY/10-J01

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY
Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the United
States Government. This material is declared a work of the U.S. Government and is not
subject to copyright protection in the United States



AFIT/GAE/ENY/10-J01

A PHOTOGRAMMETRY-BASED HYBRID SYSTEM FOR DYNAMIC TRACKING AND
MEASUREMENT

THESIS

Presented to the Faculty
Department of Aeronautical and Astronautical Engineering
Graduate School of Engineering and Management
Air Force Institute of Technology
Air University
Air Education and Training Command
In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Aeronautical Engineering

Daniel P. Magree, BS

Civilian

June 2010

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



AFIT/GAE/ENY/10-J01

A PHOTOGRAMMETRY-BASED HYBRID SYSTEM FOR DYNAMIC TRACKING AND
MEASUREMENT

Daniel P. Magree, BS

Civilian
Approved:
//signed// 14 June 2010
Jonathan T. Black, PhD (Chairman) Date
//signed// 14 June 2010
Lt Col Eric D. Swenson (Member) Date
//signed// 14 June 2010

Mark F. Reeder, PhD (Member) Date



AFIT/GAE/ENY/10-J01

Abstract

Noncontact measurements of lightweight flexible aerospace structures present sev-
eral challenges. Objects are usually mounted on a test stand because current noncontact
measurement techniques require that the net motion of the object be zero. However,
it is often desirable to take measurements of the object under operational conditions,
and in the case of miniature aerial vehicles (MAVs) and deploying space structures, the
test article will undergo significant translational motion. This thesis describes a hybrid
noncontact measurement system which will enable measurement of structural kinemat-
ics of an object freely moving about a volume. By using a real-time videogrammetry
system, a set of pan-tilt-zoom (PTZ) cameras is coordinated to track large-scale net
motion and produce high-speed, high-quality images for photogrammetric surface recon-
struction. The design of the system is presented in detail. A method of generating the
calibration parameters for the PTZ cameras is presented and evaluated and is shown to
produce good results. The results of camera synchronization tests and tracking accu-
racy evaluation are presented as well. Finally, a demonstration of the hybrid system is

presented in which all four PTZ cameras track an MAV in flight.
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A PHOTOGRAMMETRY-BASED HYBRID SYSTEM FOR DYNAMIC

TRACKING AND MEASUREMENT

I. Introduction

LIGHTWEIGHT membranes and structures are drawing increased interest for use in
a variety of applications. Membranes and inflatable structures are part of many
proposed satellite concepts serving a variety of purposes such as antenna, solar sails, and
heat shields. These materials are intended to be compactly stored for launch and then
unfurl once in space. When fully deployed, the structures will need to be able to resist
disturbance caused by accelerations of the spacecraft, electromagnetic momentum, and
other events. Miniature aerial vehicles (MAVs) are a new class of flight vehicles with
dimensions typically less than 1 m. Because of their low Reynolds number flight regime,
MAVs require a novel design approach. Lightweight, flexible material is now not only
tolerated but also designed into the aircraft and plays a key role the in the achieving
the desired flight characteristics of the vehicle. The prevalence of flexible and flapping
wings on flying animals illustrate their usefulness and possible optimality for flight at

this scale.

For effective design and operation of satellites and MAVs, measurements must be
taken of their response under normal operating conditions and anomalous disturbances.
A satellite operator must be able to tell whether his deployable structure has deployed
correctly. Resonant frequencies of the structures must be known and designed around.
Effects such as wrinkling must be detected, as they can affect structure performance.
MAYV designers are still wrestling with the generation of accurate computer models for
flight at Reynolds number on the order of 10* and lower, and require flight data to
validate these models. However, lightweight structures pose significant measurement
challenges. Large membranes have large displacement, long-period dynamics that are
difficult to measure with traditional equipment such as strain gages. Small structures

are of comparable weight to the gages themselves, and attaching them to the structure



affects the dynamic response. Adding sensors to MAVs for in-flight testing is impractical

because of payload weight limits.

Noncontact measurement methods are a logical solution to the measurement diffi-
culties described above. There are many noncontact measurement methods in use today.
Laser vibrometry, the measurement of velocity of an object based the interference of the
a laser beam with the reflected response from an object, is the standard for dynamic
measurements, boasting high spacial resolution and sampling frequency. Photogramme-
try is the process of deriving the three-dimensional coordinates of object points based on
their two dimensional location in a set of photographic images, and is increasingly in use
as computer processing and digital imaging technology matures. Other methods such as
laser range finders, capacitance measurement, and various interferometry techniques are
also found in the literature. These techniques are discussed in greater detail in the next
chapter. All of these techniques have their strengths and weaknesses, and none of them
represent a complete solution to the problem of membrane measurement. Laser vibrom-
etry has difficulty with large displacement of large membrane structures and the high
sampling frequency would be unnecessary. Capacitance and interferometry techniques
require very flat, and in the case of capacitance, conductive, material. The accuracy of
photogrammetry methods are limited by camera resolution, and processing can often be
labor intensive. The optical characteristics of the material itself, such as reflectance or
transparency, can make measurement difficult. All of the above measurement techniques
would be difficult to use on a dynamic object such as a MAV in flight or an extending

satellite boom.

Therefore, new measurement techniques must be developed confront these lim-
itations. Many of the limitations can be solved with creative application of current
techniques. For instance, recent research has enabled the use of photogrammetry on
transparent membranes [1]. Also, combining data from different sensors has been inves-

tigated to overcome the limitations of the individual measurement systems [2].

This thesis proposes a solution to one lightweight structures measurement problem
in particular: Surface reconstruction of an object that is dynamically moving throughout

a volume. Examples include measurement of the wing shape of a flapping MAV in free



flight, wing flex on a fixed-wing MAV, deployment of a solar sail, and deployment of a
boom. A hybrid measurement system approach is taken, in which large-scale motion of
the object is measured by a real-time videogrammetry system and used to direct four
pan-tilt-zoom (PTZ) cameras for taking high-resolution images of the area of interest.
The image data is then processed with photogrammetry software with which a dense
surface profile is generated. The work of this thesis was to build this system, test and
evaluate its capabilities, and establish that this approach will produce effective image
data and system state information for the accurate reconstruction of lightweight dynamic

structures.

This document is arranged as follows: Chapter 2 presents the review of current
lightweight structures measurement research, with a particular focus on photogrammetry.
Chapter 3 describes in detail the components of the measurement system, their operation
and integration. Chapter 4 presents the tests performed to validate the system and
determine its capabilities, and the results of the tests. Chapter 5 presents the conclusions

drawn from the research and suggests directions for future work.



II. Background

WITH the increased use of and interest in lightweight structures, there has been a
significant amount of research undertaken into the development of noncontact
shape measurement systems. These measurement systems vary greatly in accuracy, ease
of use, and adaptability, and so the choice of measurement system is highly application-
dependent. Many noncontact measurement systems have been investigated for their
suitability for the measurement of miniature aerial vehicle wing surface profiles and
lightweight space structures. This chapter presents an overview of the current state of

the art in noncontact measurement systems as they relate to these applications.

Methods that have gained considerable attention recently are photogrammetry and
its relative, videogrammetry. These methods form the basis of the hybrid measurement
system that is the work of this thesis, and will be discussed in detail. Additional methods
such as laser vibrometry and range finding, Moire fringe projection and capacitance are
also found in the literature and these are compared to photogrammetry techniques.
Finally, research into hybrid systems including two or more measurement techniques is

presented.

2.1 Photogrammetry

Photogrammetry is the process of deriving the three-dimensional coordinates of
object points based on their two dimensional location in a set of photographic images.
Photogrammetry has its origins in the mid-1800s, following immediately the invention of
direct photography by Louis Daguerre [3]. Photogrammetry developed gradually through
the early part of the 20th century, due to the difficulty of working with photographic film,
but still many high precision analog systems were developed for use in surveying and
map making, along with the mathematical principles of photogrammetric triangulation
and error evaluation. The last 30 years have seen the advent of inexpensive digital
computing and photography, as well as advances in optics, which has allowed greater
versatility and automation of the photogrammetric process [4]. Photogrammetry is now
used for applications as varied as robot vision, as-built facilities measurement, digitization

of cultural artifacts, and biometrics analysis [5].



Photogrammetry techniques can be divided into two main categories: target-based
and texture-based. Target-based photogrammetry requires the use of physical or pro-
jected marks on an object to aid in point referencing between images. The targets are
designed to appear as high contrast points in the images, and so are easy for imaging
software to identify. To further automate processing, some systems use coded targets
which can be directly referenced between images. Texture-based photogrammetry uses
natural or projected texture of the object to correlate points between a set of images.
This process produces a denser set of point data than target-based methods, but is
less automated and more object-dependent. In order to be suitable for texture-based
methods, the surface of the object must have sufficient contrast variation to be identifi-
able to the correlation software. Furthermore, the image angle plays a large role in the

identification and correlation of points between images [6].

In either case, the fundamental problem of photogrammetry is to determine the
relationship between the photographed objects and the captured image. The captured
image is the result of collecting and recording electromagnetic radiation reflected (or
emitted) by the objects. Therefore, the relationship between image and objects should
describe the path of rays between the object and imaging sensor. The relationship is de-
scribed by a camera model and an atmospheric model. For close range photogrammetry;,
the atmosphere is assumed to have a negligible effect on the path of the rays, and thus
the relationship is completely described by the camera model [3]. The development of

the camera model is presented in the next section.

2.1.1 Pinhole camera model. ~ Most camera models are based on an ideal pinhole
camera. A schematic of a pinhole camera is shown in Figure 2.1. A pinhole camera has
no lens, rather light passes through a point (the pinhole) in the front of the camera and
illuminates the imaging plane. By passing all rays through the same point, each position
on the screen is illuminated by rays from only one direction. The pinhole is called the
focal point or perspective center. For the theoretical model, the imaging plane can be
moved in front of the focal point so that the image appears as it would in a photographic

print. The line normal to the imaging plane that passes through the focal point is called



the optical axis, and the point at which it intersects the imaging plane is the principle
point. The distance along the optical axis between the imaging plane and the focal point

is the focal length or principal distance.

The camera imaging process can be described mathematically as the perspective
projection of three-dimensional points onto a two-dimensional plane. Consider the imag-
ing plane and the three-dimensional world points to be represented by two coordinate
systems whose origins are at the focal point. The imaging plane coordinate system (ICS)
x and y axes lie in a plane parallel to the image plane with the x axis pointing towards
right side of the image plane and the y axis pointing towards the top. The z axis is
aligned with the optical axis. The global coordinate system (GCS) can have any orien-
tation. The transformation of a point [XY Z] in GCS to point [xyz] in ICS is described
by

X T
1
MY | = e (2.1)
YA z

where M is a 3x3 rotation matrix defined by Euler angles ¢, 6, and v that rotates GCS
into ICS, and £ is a scale factor between the coordinate systems. The z coordinate of all
points in the image plane is equal to the negative of the focal length, and since the GCS
origin does not typically coincide with the focal point, translational terms X, Y7, and

Z; are introduced

X—XL T
1
Z-1, —f

The values of X, Y, and Z, and ¢, 6, and v are known as external camera parameters

[4]. If matrix M is made up of elements m; ;, Equation 2.2 can be rewritten as three
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Figure 2.1:  Schematic of a pinhole camera.

equations

r = /{Z[le(X - XL) + ml’g(Y — YL) + TTL1,3<Z - ZL)]
Yy = k[m271<X — XL) + mg’g(Y — YL) + m273<Z — ZL)]

—f = ]{I[m&l(X — XL) —+ m372(Y — YL) + mg,g(Z — ZL)]

and eliminating scale factor k leaves

. _fmm(X — X)) +mio(Y = YL) +mis(Z — Zp)
mg (X — Xp) +mgo(Y = Yr) +mss(Z — Zp)
y— _fm271(X — X1) +mop(Y = YL) +mas(Z — Zp)
mg1 (X — Xp) +mgo(Y = YL) +mss(Z — Zp)

(XY Z)

(2.6)

(2.7)

Equations 2.6 and 2.7 are called the collinearity equations, referring to the fact that the

object point, focal point and image point lie along the same line. These equations form

the basis of most photogrammetry techniques, and can be used to solve several types of



problems depending on which variables are considered known and unknowns. Unknowns

are solved for using an optimization routine, which is known as bundle adjustment.

3-D point determination can be performed with as few as two cameras, but using
additional cameras allows for self-validation of the point location results. The bundle
adjustment produces point locations that are the optimal solution to the collinearity
equation system based on the image points, and statistical evaluation of the solution can
determine precision confidence. The optimal solution points do not coincide exactly with
the location calculated from each photo, and the residual error between image points and
solution points is used to calculate confidence in the point locations. Precision estimation

is a useful feature of photogrammetry techniques.

2.1.2 FExtended camera model. The ideal camera model assumes a perfect
projection from the object point to the image plane; however, in reality this is not
the case. Causes of error in the projection include lens distortion, misalignment of the
lens, lens imperfections, and non-flat image sensor. If the effects of these flaws can
be modeled then the ideal camera model can be modified to produce more accurate
results. Commonly modeled error effects in the literature are principle point shift, radial
distortion, and decentering distortion [4, 7]. The values that define the modeling of
these effects, along with the focal length, are called internal camera parameters and are
generally solved for with a calibration method. It is important to note that internal
camera parameters are often highly dependent on the lens settings such as zoom and

focus.

Principal point shift is caused by a misalignment of the lens with respect to the
image plane. The other distortion parameters are measured with respect to the location
of the principal point, and so it must be accurately known in order to achieve optimum
model results. However, adjusting other internal and external parameters to compensate
for an unknown principal point location has been shown to produce acceptable results
[8]. The principal point shift is accounted for by replacing the z and y coordinates with

adjusted values x — xy and y —yo, where zy and g, are the location of the principal point.



Radial distortion is an increase or decrease in magnification based on radial distance
from the principal point. It contributes to what is know as “barrel” and “pincushion”
effects shown in Figure 2.2. Radial distortion can be modeled as a polynomial function

of the radial distance r

dx = kyzr? + kyxr? (2.8)
dy = kyyr? + koyr? (2.9)
r? =2 +y° (2.10)

where internal camera parameters k; and ko define the extent of the distortion. For wide
angle lenses it may be necessary to extend the radial distortion polynomial with a sixth
order term [9]. Other formulations of the distortion polynomial include using odd powers

of radial distance instead of even [5].

Decentering distortion is caused by misalignment of the lens. An example of its
effect on image points can be seen in Figure 2.3. It can be modeled and corrected for as

shown in Equation 2.11 and 2.12

dr = pi(r? + 22°) + 2pyzy (2.11)

dy = pa(r? + 2y%) + 2p11y (2.12)

where internal camera parameters p; and py define the extent of the distortion. Decen-
tering distortion is a less significant effect, being usually an order of magnitude less than

radial distortion[10].

The extended model can be written as

X - X, T —xo+dr
1
M\|Y -Yy =7 y—yo+dy (2.13)
Z—Zy —f
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where

dr = ki(x — 20)r* + ko(z — 20)r* + p1(r® + 2(x — 20)?) + 2p2( — 20)(y — o)  (2.14)

dy = ki(y — yo)r? + ka(y — yo)r* + p2(r® + 2(y — 0)*) + 2p1(z — 20)(y — o) (2.15)

Other distortion parameters can be found in the literature as well. Gruen [5]
includes scaling and shear corrections to compensate for imprecisions introduced by the
image sensor and image acquisition technique; however Remondino and Fraser [11] state

that such corrections are rarely significant in modern digital cameras.

2.1.3 Camera calibration. A calibration procedure is performed to determine
the internal camera parameters discussed above, and there are several methods. Images
can be taken of a regularly spaced point cloud such as a calibration-grid, and the cam-
era parameters are solved for along with the point locations during bundle adjustment.
This method does not require the grid measurements to be known beforehand, but does
need to be performed separately before beginning a measurement project. Alternatively,
calibration can be performed simultaneously with project data generation. The compu-
tational process is identical to the previous method, but project points and image angles
are constrained by the requirements of data collection and the project environment, and
this can lead to less robust configuration for the bundle adjustment process. Remondino
and Fraser [11] provide a good discussion of the relative merits of different calibration

techniques.

Because of the convenience and usefulness of zoom lenses, a significant amount of
research has gone into methods of calibration for these systems. The intrinsic camera
parameters are dependent on lens settings on focal length and focus, and so means
of determining the parameters are needed that are practical and produce satisfactory
results. Willson [12] provides an in-depth look at pan-tilt-zoom camera calibration, and
suggests a bivariate polynomial interpolation of the focal length, principal point and k;
distortion parameter with respect to zoom and focus settings, based on sets of calibration

data at many lens positions. More recently, Fraser and Al-Ajlouni [10] described a more

11



practical method for use with inexpensive digital cameras. Their results showed a linear
interpolation of the photogrammetric focal length, principal point, and k; distortion
parameter based on the camera focal length setting was sufficient for object accuracy on

the order of 1:10,000 (one unit error for 10,000 units object length).

Fraser and Al-Ajlouni describe the convenience of using zoom lenses for taking
photogrammetrically suitable images of architectural and historical sites, traffic accidents
and other applications. The measurement system proposed in this thesis makes use of
zoom lenses for keeping the test object well framed in each image as it moves around
the capture volume. A similar approach to those taken in the papers described above
will be used to generate a continuum of calibration parameters based on the settings of
the lenses at the time each image is taken. The use of curve fit calibration parameters
for processing a sequence of images taken at changing lens settings has not been found

in the literature by this author.

2.1.4 Videogrammetry. Videogrammetry operates on the same principles as
photogrammetry, but applies to a series of image sets. The result is a time history
of three dimensional point data from which kinematic or vibrational information can
be extracted. Because of the number of image sets to be processed, videogrammetry
systems will often include methods that reduce processing time and increase automation,
especially in the process of feature recognition. Processing using texture-based methods
usually requires intelligent application of filters and constraints or precise test setup,
and therefore can be very labor intensive. Discrete targets are often employed instead to
allow automatic marking and referencing of points between images and epochs [13-17].
Further robustness can be achieved by using a light source, cameras filtered for a specific
wavelength, and retroreflective markers [18]. The markers produce high contrast points

in images which lend themselves to filtering of extraneous data.

Real-time videogrammetry systems are the extreme case of automated photogram-
metry processing. Real-time systems can generate three-dimensional data at periods on
the order of milliseconds at frame rates of 120Hz and higher [18]. Target data can be

matched to a library of object marker patterns and the location and orientation of an
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object can be found. Fast processing is aided by using retroreflective markers and by
calculation of the interior and exterior camera parameters prior to image collection. Ad-
vances in subpixel marking techniques including the use of greyscale data for calculating

the centroid of targets has greatly improved the accuracy of these systems.

2.1.5 Applications of photogrammetry to membrane structures measurement.
Photogrammetry has several characteristics that make it attractive as a noncontact mea-

surement tool:

1. It is relatively inexpensive, and satisfactory results can be obtained with off-the-

shelf hardware.
2. It is adaptable to a wide variety of environments.
3. It has typical accuracies on the order of 1/10th of a pixel
4. Data are captured at all points simultaneously.
5. Image data can be stored for reference and (additional) processing at any time.

For these reasons, it is being adopted in a wide variety of fields. Recent research has
gone into developing benchmarks and best practices for photogrammetric measurement
of specific kinds of surfaces [6, 13, 19]. In fields such as MAV aerodynamic research,
photogrammetry has become the standard measurement technique for structures such as

flapping wings [20-22].

The use of photogrammetry to measure large space structures has been steadily
developing over the past ten years. Pappa et al. [23] described in a 2001 paper the
use commercially available cameras and software to derive the surface profile of a 5 m
inflatable antenna. Retroreflective targets were used along with flash photography to
create defined targets on the structure, and results showed an accuracy on the order
of 1:10,000. Blandino et al. [13] investigated the use of videogrammetry for modal
identification in membrane structures and compared the results with those from scanning
laser vibrometer. Pappa et al. [14] investigated laser dot projection of targets onto
the membrane structure to maintain high target contrast without the use of physically

attached retroreflective targets, and Dorrington et al. [1] used fluorescent coatings to
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generate targets on transparent membranes. More recently, videogrammetry has been

used to measure in-plane motion of a thin film [15].

Photogrammetry has also been used extensively as a measurement tool in MAV
research. Lightweight and flexible materials are often critical design components, and it
would be difficult or impossible to attach physical sensors without affecting their dynamic
response. Pitcher et al. [16] gives an analysis of the mode shapes of the wing of a
Nighthawk mini-UAV at various angles of attack. Three synchronized cameras captured
images at 75 frames per second of the Nighthawk in the wind tunnel. The wing of the
nighthawk was covered with a combination of coded and uncoded targets and additional
targets were placed on the floor around the vehicle for reference. Results showed that
the videogrammetry system was well-suited to measuring the large displacements of the
wing, but the limited resolution of the system, approximately .5mm per pixel, meant
low-amplitude wing vibration was lost in noise. However, at test conditions that did
produce large enough displacements, power spectral density curves were generated and

animation of the vibration of the wing at resonant frequencies was accomplished.

Photogrammetry techniques have become the standard for wing shape measure-
ment of flapping wings. Curtis et al. [20] analyze the shape of a number of wings of
different shapes and materials by taking synchronous images of a laser dot pattern pro-
jected onto the surface of the wing while it flaps on a test stand. Additional printed
dots were fixed to the flapping mechanism for reference. The images are processed using
PhotoModeler! photogrammetry software, and a time history of the surface shape was
generated. This method had the advantage of minimal interference with the structure
of the wing being tested, since no physical targets were attached to the wing surface. A
denser profile can be obtained with a digital image correlation (DIC) method, a texture-
based photogrammetry technique, as described in Aono et al. [21] and Chakravarty and
Albertani [22]. A random speckle pattern is applied to the test article and is correlated
between synchronous images. Aono et al. used stereo high speed cameras to capture
images of a flapping wing in a vacuum chamber. Chakravarty and Albertani examined

the membrane alone, mounted on a wire ring, undergoing static and dynamic deforma-
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tions. Both systems perform temporal tracking, which correlates the speckle pattern

across epochs.

All techniques used in MAV wing shape and space structure measurement cur-
rently require the test article to be on a stand or actuator and the cameras and other
photogrammetry equipment placed around it. This tends to restrict the kind of testing
that can be performed on the article to cruise and hovering flight conditions in the case of
MAVs and fixed-average-position tests for both MAVs and membranes. Measurement of
wing shape during maneuvering flight has not been found in the literature by this author,
nor has deploying or translating membranes. Expanding the use of photogrammetry to
include such test conditions will provide unique data sets for improved understanding of

the characteristics of these structures.

Real-time videogrammetry is widely used to rapidly prototype automatic control
strategies. By moving location sensing off-board the vehicle, complex control strate-
gies can be tested on inexpensive vehicles, thereby eliminating the costs of a lightweight
implementation on the vehicle and the risk of damage in the case of a vehicle crash.
Massachusetts Institute of Technology’s Real-time indoor Autonomous Vehicle test En-
vironment (RAVEN) [24] and Boeing’s UAV Swarm testbed [25-27] host tests ranging
from cooperative control of vehicles to nonlinear control for aircraft aerobatic maneu-
vers. These systems require many cameras for maximum redundancy. These systems
are popular for post-processing applications as well, in the entertainment industry, in
biometric analysis, and inverse kinematics [28]. Though other efforts have been made at
close-range object location and orientation, real-time videogrammetry systems are the

most widely accepted. [29-31]

2.2 Comparison with Other Noncontact Measurement Systems

Comparison of photogrammetry to other noncontact measurement systems helps to
illustrate the strengths and weaknesses of the technique. Laser vibrometry has been an
accepted measurement tool for many years, and is often used as a control measurement
in investigations of new measurement techniques [13]. 3-D time-of-flight laser scanners

share similar properties to laser vibrometers, but measure static three dimensional po-
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sition rather than velocity. Other measurement systems such as Moire interferometry;,
geometric Moire, and capacitance measurement have been used, especially for the mea-

surement of membrane structures.

Laser vibrometry is the measurement of velocity of an object based the interference
of a laser beam with the reflected response from an object. Based on the phase shift
in the light due to the Doppler effect, relative velocity of the object can be calculated
directly. Laser vibrometry is a point-based measurement device which takes data at
specific locations on an object. An entire surface can be analyzed by collecting data
over a grid of points. Data can be recorded at frequencies of a MHz and higher and
with micrometer resolutions. As noted above, videogrammetry measurements have data
collection rates limited by the frame rates of the cameras used, and systems exceeding

several hundred fps are rare.

The high measurement frequency and and resolution of laser vibrometers come
at a cost. As is noted in [13], laser vibrometry is a relatively expensive technology
compared to videogrammetry, with single-point vibrometry systems starting at $20,000
and scanning systems costing over $100,000. The performance benefit does not always
justify the additional cost in applications such as large space structures, where vibration
frequencies are often quite low. Also, Pitcher et al. [16] notes that large amplitude
vibrations are often well above the maximum threshold of laser measurement systems.
In photogrammetric systems, the amplitude of the measurements is limited by the depth
of field of the cameras being used, and in most cases, this is quite large in comparison

to laser vibrometers.

3-D time-of-flight laser scanning measures three dimensional locations, and shares
some of the characteristics of laser vibrometers in that it is not affected by ambient
lighting, and records data point by point. Markley et al. [2] describe this measurement
technique as it relates to modeling of as-built facilities and note that in practice its
accuracy is comparable to photogrammetry, but that it is much less time consuming than
photogrammetry to initially gather data when analyzing large structures. Generating

models from the data from either measurement technique can be labor intensive and
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prone to operator error. A hybrid technique was suggested as a way of overcoming the

limitations and providing redundancy.

Moire interferometry has the benefit of being a full field measurement technique,
but requires a diffraction grating or grid to be attached to the test object. Other in-
terferometry techniques do no require surface preparation, but all need a generally flat
surface and relatively low displacement [32]. Capacitance measurement is also found in

the literature but is not common and requires a flat, conductive surface [33].

In summary, photogrammetry is the preferred option in situations that require
versatility and a moderate degree of accuracy. Its full-field capability as well as its
ability to self-validate its data are useful properties in many applications. As imaging

technology improves, photogrammetry will continue to get more accurate and reliable.

2.3 Hybrid Measurement Systems

The term “hybrid measurement system” refers to the combination of two or more
measurement systems to accomplish a single task. There are two senses in which the
systems are combined: data merging and system slaving. Data merging, which is far
more common in the literature, is the combining of data gathered from two different
measurement systems in order to provide redundancy and to compensate for deficiencies
in the individual data sets [2, 34, 35]. System slaving is the controlling of one local
measurement system with another global measurement system. This method is useful
when there is one particular area of interest that could be at an arbitrary location in

large volume.

The concept of master-slave system relationship for sensors is used in the area
of surveillance camera networks, in which a wide-angle camera directs a pan-tilt-zoom
camera to a location of interest such as a person [36, 37]. The purpose of these systems is
to provide clear images that allow a person’s biometric characteristics to be identified by
an operator. Strictly speaking these systems should be distinguished from measurement

systems, since precise quantitative data is not required on the object of interest.
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Slaving of measurement systems is a new area of study begun three years ago at
the Air Force Institute of Technology. A hybrid system was developed which involved
a real-time videogrammetry system for detecting the global location and orientation of
an object, and a mirror system to direct a laser vibrometer beam onto a point on the
object [38, 39]. The static and dynamic error of the aiming system was determined
and vibrational data of a moving object was shown to correlate with a static object
case. The major deficiency of the system was the time delay involved in calculating the
coordinates of the object by the videogrammetry system and transmitting the data to the
laser steering system. The delay of approximately 200 ms caused the laser to point at a
previous location of the object and therefore limited the speed at which the object could
be moved and still have the laser illuminate it. The tracking error was improved with the
addition of a Kalman filter to the tracking algorithm, but the fact that laser vibrometry
is a point measurement technique still presented difficulties. The use of photogrammetry
as the local measurement system will help to resolve this difficulty, since it is a full-field

measurement technique.

This research combines a real-time videogrammetry system for detecting global
location of the test object and four PTZ cameras for taking high-speed, high-resolution
images suitable for photogrammetry. In the next section, the details of the system design
will be presented, including system configuration, the determination of the gimbal and

lens settings, and the software controller.
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III. System Design and Development
3.1 System Overview

The dynamic tracking and measurement (DTM) system consists of two hybridized

subsystems:

1. A videogrammetry system to capture large scale 3D motion.

2. A set of synchronized pan-tilt-zoom (PTZ) cameras that can capture motion at

high frame rates.

The videogrammetry system calculates the position of the object in real time using
the retroreflective markers placed on the object. The object coordinates are passed to
software controllers which calculate gimbal azimuth and elevation and lens zoom and
focus for each PTZ camera. Images are captured synchronously at up to 500 fps and
stored on the controller computers. Testing equipment includes a rotating table used to
constrain dynamic motion. Each component is coordinated as needed through hardware
and software interfaces. A block diagram of the hybrid system is shown in Figure 3.1,
the videogrammetry camera setup is shown in Figure 3.2. A PTZ camera is shown in

Figure 3.3 with the rotating table in Figure 3.4.
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Figure 3.1: = The DTM system consists of a videogrammetry subsystem for real-time
motion capture and four pan-tilt-zoom camera subsystems.
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Figure 3.2:  Videogrammetry cameras are setup around the room’s perimeter and track
body motion. Each tracking subsystem uses this data to focus at the moving point.

Figure 3.3: A camera subsystem consists of a two axis gimbal, zoom-focus lens, a high
speed camera, and controller computer (not shown).

3.2 Videogrammetry System

Three dimensional position measurement of an object of interest is accomplished
by a videogrammetry system built by Vicon!. Ten cameras are mounted around the lab
perimeter? (see Figure 3.2). Retro-reflective spherical videogrammetry targets imaged by
cameras are marked to subpixel accuracy. The 2-D locations of marked targets on each
image are then sent to the central data station which interprets them as rays through
space. Knowing each camera’s location and orientation, the global location of the markers
is determined by ray intersection to determine a 3-D location in the videogrammetry

coordinate system (VCS). Sets of 3-D global target positions are compared to a library

Wicon, 5419 McConnell Avenue, Los Angeles, CA 90066, USA moveme@vicon.com

2The videogrammetry cameras are MX T160 type with 16 megapixel resolution. Software used was
Tracker v1.1. The working capture volume is approximately 5m x 7m x 2.5m. Markers of 3mm-8mm
diameter were used.
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(a) Turntable showing mounted (b) Turntable detail
videogrammetry object

Figure 3.4:  Samples can be mounted on a platform that maintains orientation while
moving through a circular path.

of objects. For each pattern match, the location and orientation of its body coordinate

system is determined with respect to the global coordinate system.

The videogrammetry system must be calibrated prior to use, after re-orienting the
cameras, and after normal disturbances have affected the camera positions sufficiently.
The system is calibrated by using a specially designed videogrammetry object called a
calibration wand, shown in Figure 3.5. The wand is moved about the volume and a
number of frames, typically 2500, are recorded by each camera. The frames are pro-
cessed, and the root-mean-square (RMS) error for individual camera rays are calculated
to provide insight on the quality of the calibration. Typical RMS error values range from
.25 mm to .35 mm. The origin of the VCS is set by placing the calibration wand at the

desired location and recording it in the software.

The noise of the position measurement was characterized by the perceived motion
of a stationary object. Translation on the order of 0.75 mm and rotation on the order
of 0.005° were observed; both well below the requirements for centering an object in the
field of view. Similar results were obtained in Ref. [18]. The videogrammetry system

has an update rate of 120 Hz at full field resolution.

Objects are defined in Vicon by selecting a collection of retroreflective markers
affixed to the object and assigning them a unique identifier. The markers must be
placed sufficiently nonsymmentrically to allow the software to determine orientation,

and the pattern must distinguishable from other defined objects. Spherical markers are
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Figure 3.5:  Calibration wand used to calibrate and set the origin of the videogramme-
try system

the most robust, since they appear identical from any direction, but two-dimensional
circles of retroreflective tape can also be used, provided that the viewing angle of the

videogrammetry cameras is not too shallow.

3.3 Camera Gimbals

Each PTZ camera is steered by a gimbal (shown in Figure 3.3) which rotates about
perpendicular axes. The bottom servo rotates for panning (also known as azimuth) and
the top servo rotates for changing elevation. Elevation and azimuth command messages
are sent by serial communication to the gimbal which interprets and returns its current
position. The nominal position accuracy is 0.01° and maximum slew rate is 120° per

second.

3.8.1 Camera aiming. The gimbal control software calculates the azimuth
and elevation angles for accurately aiming the camera. Assume that the location and
orientation of the gimbal system are known and given by a position ?, and unit vectors
for the body x, y and z axes, 7, ? and @ respectively and that the location of interest
is 7 with all vectors given in the VCS. The point ? lies at the intersection of the
azimuth rotation axis and the elevation rotation axis. The gimbal body coordinate

system (BCS) z axis is collinear with the azimuth axis and the body y axis is collinear
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with the elevation rotation axis at home position. The directions are chosen so that the
system is right handed and x points out parallel to the camera’s optical axis. This axes
definition ensures that tracking angles correspond to counterclockwise rotations about

the respective axes. Figure 3.6 illustrates the coordinate systems and their relationships.

| BCS

Figure 3.6:  Vector 7 is the distance between the gimbal and test object, and is trans-
formed into gimbal body coordinate system to calculate azimuth and elevation angles.

The vector 7 = 7 — ? represents the line connecting the camera to the point
_>
of interest. The transform (77 [d@, b, @])T = 7' gives the line in BCS. The elevation

angle, 1, is found by
) =arctan2 <7;/ 72 7;2) (3.1)

where arctan2 is the inverse tangent that uses the signs of the numerator and denominator

to distinguish quadrant. The azimuth angle, ¢, is found by

¢ =arctan2 (—7;/7;) . (3.2)

3.3.2  Camera location. In order to calculate azimuth and elevation angles, the
gimbal BCS must be known in relation to the VCS. The following section describes several
methods of determining the BCS. The BCS can be located by hand, by photogrammetry,
or by being defined and located by the videogrammetry system. FEach method has

advantages and disadvantages which will be discussed.
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Hand location is any method that locates the BCS by manually adjusting the
location and orientation parameters. This can be as simple as using a tape measure to
find the z, y and z coordinates and aligning the BCS and VCS orientation. However,
another hand method was developed that isolates the coordinates and allows them to be

adjusted individually, and is described next.

The three orientation parameters which define the BCS orientation can be reduced
to one z axis rotation by ensuring the gimbal is mounted on a flat surface or level tripod as
shown previously in Figure 3.3, so that the z gimbal axis is aligned with the VCS z axis.
A step-by-step method was developed for determining the three location coordinates and
z axis rotation one at a time. The rotation angle about the z axis, 6, is found by tasking
the camera to point along the BCS x or y axis. The VCS x and y axis are easily visible
on the lab floor, and 6 is adjusted until the camera is observed to be pointing along the
corresponding VCS axis. The z coordinate is found by holding a videogrammetry object
at the same height as the camera, and reading the z coordinate of the object. The x
and y coordinates are found in a two step process, illustrated in Figure 3.7. First, a
videogrammetry object is placed along either the x or y axis, and the tracking system is
tasked to point at where it thinks the object is based on the current estimated camera
location. The other location parameter is adjusted until the camera is pointing at the
object. Second, the object is moved off the axis and the final parameter is adjusted until

the camera points at the object.

/ actual Y { ."f-
™~ |ocation :
estimated A==k e i i
location
% X
(a) y coordinate location (b) x coordinate location

Figure 3.7:  Videogrammetry object is aligned with z axis and y camera coordinate is
adjusted, then the object is moved off-axis and the x coordinated is adjusted.
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The method described above produces camera locations that are adequately accu-
rate for tracking objects in motion in the lab. The BCS location can be found to within
approximately 2.5 ¢m in each axis direction. Finer adjustments than this produce no
gain in aiming accuracy over the capture volume, due to errors in the z axis orientation
and camera mounting. There are several drawbacks to this method. The method must
be repeated for each camera location, which is time-consuming. Furthermore, the pos-
sible location of the cameras are restricted by the capture volume. The camera height
cannot be measured if it is mounted higher than the maximum height the videogramme-
try system can detect an object. Therefore, a more versatile method has been developed

that would overcome some of these problems.

The new method uses the videogrammetry system and PhotoModeler photogram-
metry software to find the locations and orientations of all cameras at the same time.
This method requires knowing the internal calibration parameters for each camera in or-
der to perform accurate photogrammetric processing. The photogrammetry processing
generates the location and orientation of the cameras with respect to an arbitrary coordi-
nate system when it performs the bundle adjustment on a set of images. By transforming

these coordinates into the VCS, the proper camera parameters can be found.

To help with this process, a special targeted object is used, shown in Figure
3.8. This targeted object has retroreflective videogrammetry markers and PhotoModeler
coded targets on it. The purpose of the object is to allow the videogrammetry object
coordinate system (VOCS) and the photogrammetry coordinate system (PCS) to be
defined identically. This reduces the number of coordinate transformations and reduces
error. The axes and scale attached to the targeted object are defined with a set of images
of the object before taking images for camera location. Any calibrated camera can be

used for setting up the targeted object.

The videogrammetry object is defined such that the origin of the VOCS is located
at one of the retroreflective markers, the x axis aligned with another marker, and the y
axis in the plane of a third. The coded targets are used to speed up image processing by
allowing automatic marking and referencing. A set of images are taken with a calibrated

camera, and a flash is used to cause the retroreflective markers to show up brightly. The
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coded targets are automatically marked and referenced by the photogrammetry software,
and the high-contrast retroreflective markers are marked and referenced by hand using
the software’s subpixel marking tool. The images are processed to generate the three-
dimensional coordinates of each referenced point. Since the retroreflective markers were
referenced, these points can be used to define the PCS the same way as the VOCS was
defined.

Figure 3.8:  Targeted object used for camera location. Retroreflective and coded targets
are shown. The VOCS and PCS z and y axes are shown, with the origin at their
intersection and the z axis oriented so as to form a right hand coordinate system.

The photogrammetry project and the images used to set up the targeted object
are duplicated and reused for every new camera location project. The targeted object
will only need to be redefined if either the retroreflective markers or coded targets are
changed or disturbed. Therefore it is important that they be securely attached to the
object.

Once the targeted object is defined, it can be used to locate the PTZ cameras.
This can be done one at a time or in groups, the limiting factor being the ability of
each camera to see the coded targets on the targeted object. An additional restriction
is that the internal parameters of each of the PTZ cameras must be known. These can
be determined from a calibration at the current camera state, or by approximating the
parameters using curve fits to a set of calibrations. Curve fit calibration parameters will

be described in a later section. The most important parameter for camera location is
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the focal length. It was found to be difficult to get the required accuracy for camera
location with a curve fit approximation, and the best results have been obtained by using

a camera state at which the camera calibration routine has been run.

The targeted object is placed in a location where each camera can see it. The
location and orientation of the targeted object in the VCS is recorded, and images of the
targeted object are taken with each camera. If desired, the targeted object can be rotated
and additional sets of images, locations and orientations can be gathered to provide
redundant locations for error checking. The images are imported into the PhotoModeler
project set up previously, and they are automatically marked and processed using the
internal camera parameters. The processing generates camera locations and orientations

in the PCS.

The final step is to transform the PCS locations and orientations into VCS. The
PCS locations, [z,, Y, 2,] ", are transformed by multiplying by a rotation matrix derived
from the orientation of the targeted object in VCS, defined by body 1-2-3 angles ¢,,
0,, and 1, and adding it to the translation vector from the VCS origin to the targeted

object, [Ty, Yo, 2] -

T, Ty T
Ye| — | Yo + Cpcs,vcs UYp (33)
Ze 2 Zp

where Cpes pes 15 the rotation matrix from PCS to VCS given by

cos(¢,) —sin(y,) 0] | cos(d,) 0 sin(6,)| |1 0 0
Cpeswes = | sin(¢h,)  cos(¢h,) 0 0 1 0 0 cos(¢p) —sin(ep)
0 0 1| |—sin(d,) 0 cos(d,)| |0 sin(¢,) cos(dp)

(3.4)

This transformation gives the location of the camera in VCS, [z, ¥e, 2. ", which can be

directly entered into the tracking controller.
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Since we have assumed that the PTZ camera z axis is aligned with the VCS 2z
axis, there is only one camera rotation parameter to find, the rotation about the z axis,
0. The camera coordinate system (CCS) in PCS is given in body 1-2-3 form, with the
camera x axis pointing to the right of the image plane and y axis pointing up, if looking
at the camera from behind (illustrated previously in Figure 2.1). The z axis lies along
the optical axis pointing the opposite direction of the camera. Thus the negative z
axis points out the front of the lens. A rotation matrix Ccspes can be formed from the
rotation angles ¢,, 0,, and 1, and multiplying this by the rotation matrix from PCS to
VCS gives the camera orientation in VCS. The unit vector passing through the front of

the lens is given by

0
:Cpcs,vcs Occs,pcs 0 (3 5)
—1

=>

<<

N>

The angle 6 is found by subtracting the angle between the projection of the vector out
the front of the lens onto the VCS z-y plane and the VCS z axis from the gimbal azimuth
angle. First evaluate the cross product of the projection of the camera ray on the VCS

-y plane and the x axis.

i 1
w=|g] x |0 (3.6)
0 0

The angle between the two vectors is given by

0" = arcsin | ————— 3.7
( o3 3 P ( )

Subtracting 6 from the gimbal azimuth angle at which the photograph was taken gives

the desired rotation value 6.

These transformations are performed in a MATLAB script which has as inputs the
VCS and PCS data and outputs the camera location parameters and the angle 6" of the
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camera. 6’ must be subtracted from the gimbal azimuth angle manually to determine

the 6 parameter.

To test the effectiveness of this method of locating the cameras, twenty camera
locations were generated based on three separate projects. During project one and two,
the PTZ camera was mounted on a tripod about 1.5 m off the floor and about 3 m from
the center of the room and the targeted object was placed on the floor in the center of
the room. During project three, another camera was included to illustrate the process
of locating more than one camera at the same time. The VCS origin was defined to be

in the center of the room but at table height, approximately 0.6 m above the floor.

The PTZ camera was calibrated at the lens settings that were used for image
capture. The lens settings were not changed between projects. Images were captured
of the targeted object during each of the first two projects. The targeted object was
rotated between each image, and the videogrammetry coordinates of the new location
was recorded each time. The PTZ camera orientation was not changed. The set of images
was imported into a PhotoModeler photogrammetry software project which included the
“set-up” images which were used earlier to define the PCS. The photos were processed,
and the locations and orientations of the camera in the PCS were exported. This data,
along with the location of the targeted object in each image, were imported into the

MATLAB script and the transforms described above were applied.

Project three was processed in an identical way, except an additional PTZ camera
took images at each of four targeted object positions. In order for the object to be in view
of both cameras, the object was moved from the center of the room and the orientations,

but not location, of the PTZ cameras was changed from project one and two.

The data from each project for the primary PTZ camera is shown in Table 3.1.
Listed is the standard deviation in each direction, and the distance that the average of
all generated locations were from the hand location method. Even considering the uncer-
tainty of the hand location method, approximately 2.5 cm in each direction, the average
value is consistently outside this. This makes intuitive sense, since the photogrammetry
method of location measures from the ideal focal point of the lens, which does not coin-

cide with the origin of the gimbal axes. In other words, the origins of the CCS and the

29



gimbal BCS do not in general coincide. This fact illustrates the principle deficiency of
location of the cameras by this method. There is currently no simple way to relate the

focal point to the origin of the gimbal axes.

Figure 3.9 shows the camera locations generated by the photogrammetry method
and the hand-generated gimbal location. It can be seen that the photogrammetry-
generated locations are generally located closer to the object than the hand-generated
locations. Also, project three data are rotated counterclockwise around the control point,
corresponding to the rotation of the camera for that project. Thus the data appear to
roughly lie on the optical axis of the camera ahead of the gimbal origin (see Figure 3.10).
It is supposed that with additional data, a correction factor could be derived that would
account for the error, considering that the data are generally precise. In particular, ad-
ditional data should be gathered on the dependence of the generated locations on the
lens settings. Focal length and focus setting may have a significant effect on the position

of the ideal focal point.

It was found that the photogrammetry method of locating the cameras was precise
but less accurate than the hand calibration method. Although highly accurate location
of the cameras is not necessary, deviations over 5 cm produce noticeable aiming errors
which could result in lost image data. Potential benefits of multi-camera location are
currently outweighed by the need to calibrate the cameras prior to use. If improved
curve fits to the calibration parameters are developed which would obviate the need for
pre-calibration, as well as a correction factor for the difference between focal point and
gimbal origin, this method may become useful for large multiple-PTZ-camera systems

where the cameras are located outside the capture volume.

Table 3.1:  Data from camera location by photogrammetry

Project Images o0, (mm) o, (mm) o, (mm) Dist. of average from
hand location (mm)

1 8 8.11 4.45 7.39 65.6
2 8 8.93 23.35 2898  70.2
3 4 13.88 9.01 1095  73.7
All 20 14.05 21.73 19.25  66.4
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Figure 3.9: Planar graphs of camera locations with respect to hand location point
(denoted by circle). Blue x denotes project one and two points. Red square denotes
project three points, found after rotating camera. Scale is in millimeters.

A third camera location technique involves using retroreflective videogrammetry
targets to register the gimbals as videogrammetry objects, with their origin at the gimbal
axes intersection. This is the most direct approach to camera location; since the goal
is to know the camera locations in the VCS, it makes sense to have them located by
the videogrammetry system. Furthermore, once the gimbal videogrammetry objects are
defined, there is very little additional work for the operator. The camera stands can
be moved to a new location and the videogrammetry system will record the location
and pass it to the aiming software automatically. However, this method requires that
the cameras be placed within the capture volume of the videogrammetry system, and

therefore reduces the amount of the volume that can be used for test articles. This can
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Figure 3.10:  Relation of the gimbal rotation axes (red) to the optical axis and ap-
proximate focal point of the camera (blue). The gimbal = axis and the optical axis are
parallel (but not collinear) when the gimbal is at zero azimuth and elevation.

be a significant problem, since typical ten-camera videogrammetry capture volume is
not more than a few meters on each side, and the minimum focal distance of the PTZ
cameras is 1.5 m. This location method is preferred for its ease of use, but it is not

always possible to implement.

The gimbal objects are defined by placing retroreflective markers on the bottom
fixed servo and creating an object in the videogrammetry software. The origin of the
newly defined object must then be manually translated to the intersection of the gimbal
axes. This is done with the aid of temporary markers placed on the camera approximately
on the axes of the gimbal. Finally, the gimbal is rotated to zero azimuth angle, and the
x axis of the object coordinate system is rotated to align with the camera’s optical axis.
When the gimbal is placed in the videogrammetry capture volume, the location and

orientation is generated and can be passed to the aiming software.

Videogrammetry markers can be located to sub-millimeter accuracy, and so the
accuracy of the location of the gimbal origin is limited only by the ability to place the
temporary markers on the gimbal axes for correct alignment of the object coordinate
system. The directions of the gimbal axes are well-defined on the gimbal, by the rotating

shafts extending outside the case.
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The three methods described above provide a variety of ways to locate the PTZ
cameras. Camera location is a necessary step for aiming, zooming and focusing the

cameras on a moving object.

3.4 Lens

Photogrammetric accuracy is primarily dependent upon the resolution of the object
in images used for processing. Therefore it is desirable for the test object to fill as much
of the frame as possible. Zoom and focus lenses are used to maintain a sharp image and

a desired viewing radius at the distance of the object.

Four closed circuit television lenses are used to control aperture, magnification,
and focus of the pan-tilt-zoom cameras. Commands are sent to the lens via 16 bit serial
protocol. The lens is capable of viewing angles from 29° to 2°, and can focus on objects
as close as 1.5 m. The lens can frame and focus on a 0.5 m diameter sphere at any
distance between 1.75 m and 14 m, although typical distances in the current lab are

between 1.75 m and 4 m.

The magnification and focus settings for each lens are determined from the distance
of the object and the desired field of view at that distance. In the system, the lens acts
as a varifocal lens, in that the magnification and the focus are functions of one another;
however, the effect of changing the focus on the magnification was minimal across all

magnification settings, and so was neglected.

Functions of magnification and focus were determined from collected data. First,
the angle of view was recorded for seven magnification settings, with the focus setting
at its minimum. An empirical equation was developed for the magnification setting as a
function of the viewing angle using a least squares fit of a polynomial curve to interpolate
between the points. Letting r be the distance to the object and d be the width of the

field of view at that distance, the viewing angle w is given by

w =2arctan(d/2r) (3.8)
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Note that a maximum w of 19° is found at the minimum distance of 1.5 m and largest

typical viewing radius of .25 m in the lab. A fifth order polynomial of the form
Zy =co + 1w + cow? + c3w® + caw® + c5w° (3.9)

was found to produce good magnification results. Figure 3.11(a) shows the curve fit and
the data points. At large w the curve fit is unrealistic, but for values of w below 19° the

curve adjusts the field of view with sufficient accuracy.

The focus setting function was derived using a bivariate interpolation of magnifi-
cation and focus data. Magnification and focus data were collected at six distances, and
six hyperbolic polynomials were fit to these data.The choice of function and polynomial
order were made based on observation of general trends in the data. Let Fy be the focus

setting.
Fo=ao+ai(1/Z,) + ay(1/Z,)? (3.10)

where ag, a; and as are polynomial coefficients. Another set of 1st order polynomials

were fit to the coefficients as a function of distance, shown in Figure 11(b).
a; = b@o + bi717” 1= 0, 1, 2 (311)

and so

F, = i(bi,0 + by1d) (Zi) (3.12)

=0

Figure 3.12 shows the initial data and the distances at which it was gathered in blue and
the curve fits based on that data in red. Although the curve fits do not match the data
very well in some regions, especially at the edges of the capture volume, in the typical
region for this lab the curve fits are reasonable. The green hashed line shows the lower
distance limit from the camera and two lines of constant field of view (FOV) at which

typical test articles are photographed.
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Note also that at short distances the focus setting appears to be very sensitive to the
magnification setting. The 2.26 m distance curve covers the entire range of focus settings
over only approximately 15,000 units of magnification. This is somewhat misleading.
While it is true that optimal focus is highly dependent on magnification on these curves,
the depth of focus is increased at lower magnification settings. Therefore there is a
greater tolerance for error in the focus setting, and conditions that according to this

graph are less than ideal nonetheless produce suitable images.

Another feature to notice in Figure 3.12 is trimming of part of the domain at low
FOV settings and short distances. This effect must be taken into account when preparing
the camera system for image capture. The PTZ cameras may need to be placed further

outside the capture volume for smaller objects.

Figure 3.13 illustrates the entire process of calculating the lens settings. This
method of generating the focus and magnification settings provides good clarity and
framing of an object within the capture volume. Combining the aiming, zoom and focus
systems produces the PTZ camera system which provides framing and focusing from four

viewpoints.

3.5 Camera

Each camera is capable of taking 500 frames per second at 1280x1024 pixel res-
olution. Synchronous image capture is achieved by having the cameras capture frames
based on an external trigger. The trigger is generated by a hardware timer in the control

computer and sent to each of the cameras.

Distance, r . ) coefficients 1 T2 Focus setting
a; = Djo + DT F=a+a (—) +a; (—) — >
ZS ZS
Desired field Magnification
of view, d w i
@ = 2tan—1! (%) Zo=Co+ 0+ w? +c30° + ot + 5w’ Zs sefting
T

Figure 3.13:  Schematic describing the calculation of magnification and focus settings
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3.6 Computers and Software

Each of the four cameras that comprise the PTZ camera system has a dedicated
computer containing control software and image storage. The control software is used
for calculating and communicating gimbal and lens commands as described above and to
record current gimbal and lens states. Another software package performs image capture
and records the images to a 2 terabyte RAID? array. A fifth computer is used to generate
the trigger signal for the cameras, and it can also be used to control each of the four
camera computers over the network so that an image capture can be set up and run
from one station. The 3-D position of a test object is obtained from the videogrammetry
system software run on a dedicated computer. All computers are connected with a gigabit
local area network. Figure 3.14 illustrates the communication between the software and

hardware.

The PTZ controller software is implemented in the data-flow programming soft-
ware LabVIEW?. The controller consists of four main parts: Data acquisition from the
videogrammetry software, gimbal controller, lens controller, and lens and gimbal state
recorder. These parts are placed in separate programming loops for optimal speed for

each part. Figure 3.15 shows the control software interface.

Data acquisition is accomplished using a .NET library supplied by Vicon. The
controller software uses this library to call for the location and orientation of specific ob-
jects from the videogrammetry software. If the camera is registered as a videogrammetry
object, its location is requested at the beginning of tracking also. The videogrammetry

system produces data at 120 Hz at full 16 megapixel resolution.

The gimbal controller implements the aiming algorithm described in Sections 3.3
and 3.4. At each iteration of the gimbal loop, the azimuth and elevation is calculated and
compared to the previous command. If the change is greater than a certain threshold,
the command is send to the gimbal. Azimuth and elevation are sent at one time and
additional commands to new angles override previous ones. If the change is less than the

threshold, no command is sent to the gimbal in order to avoid unnecessary use when the

3Redundant Array of Independent Disks
4National Instruments Corporation, 11500 N Mopac Expwy. Austin, TX 78759-3504
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The lens, gimbal and lens and gimbal state recording is controlled with

shown.
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tracked object is stationary. Typical thresholds are 0.01°. Whether or not a command

is sent, the controller program queries the current azimuth and elevation of the gimbal.

The lens controller implements the focus and zoom algorithm described above. The
appropriate zoom and focus setting is calculated, and a similar thresholding is applied
as to the gimbal. Typical threshold values for both zoom and focus are 1,000 units. The
commands must be sent in a series; sending a focus command before the zoom command
is completed will interrupt the zoom. Waiting for previous commands to complete limits
how quickly new commands can be sent. After each command, the lens state is queried
repeatedly as the setting changes, resulting in knowledge of the zoom and focus settings

throughout the change.

The gimbal and lens controller loops run at the maximum speed allowed by each
device. The gimbal loop averages approximately 15 ms for one iteration when no move-
ment command is sent, and 22 ms when commands are sent. The lens loop must wait
until each zoom and focus command is completed before restarting and potentially send-
ing a new command. The time this takes varies depending on how large a change is

directed, but can be 500 ms or more.

The object location, gimbal state, and lens state are all saved into an array for
use in photogrammetric image processing in a data recording loop. The recording loop
is a timed loop that runs with a 5 ms period in order not to miss any data from the
other loops. Additionally, the recording loop period and loop iteration is recorded to
alert to any error in timing. The timing of this loop is critical, as it will be the basis of

synchronizing the gimbal and lens state information with the image sequence.

The images and the lens and gimbal state data are used by the photogrammetry
software to generate surface profiles. The state data, in particular the zoom setting of
the lens, is used to determine the camera calibration parameters as is described in the
next chapter. With the calibration parameters, the images can be processed and 3-D

point locations found.
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3.7 Image Processing

Image processing is performed with the commercial photogrammetry software Pho-
toModeler Scanner. The software contains subpixel marking tools, coded target recog-

nition, and texture-based photogrammetry tools.

Although common image processing routines are well developed and automated
within PhotoModeler, dynamic tracking and measurement requires additional flexibility
due to the dynamic internal and external camera parameters, the motion of the test ob-
ject, and the large number of images to be processed. The necessary custom automation
can be brought about by controlling PhotoModeler externally using dynamic data ex-
change and a scripting software such as MATLAB. The majority of the photogrammetry
processes, with the notable current exception of texture-based surface mapping, can be

controlled in this way.

3.8 Test Equipment

The dynamic accuracy of the aiming system was measured using a rotation table
shown previously in Figure 3.4. The rotation table allowed infinite duration movement
along a circular path. The mounting platform at the end of the arm counterrotates
with the turntable itself by means of a gear and belt system. This keeps the mounted
object facing the same direction and all points on the object maintaining the same speed
throughout the rotation. A box with several coded targets on its face was defined in the

videogrammetry software and was tracked for the dynamic tests.
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IV. System Tests and Results

FOUR primary tests were performed to evaluate the capabilities of the DTM sys-
tem, and their methodology and results are presented in this chapter. First, a
description of the use of curve fits for determining calibration parameters is given and
an analysis of suitability of this approach is presented. Image synchronization is demon-
strated. The camera aiming error is evaluated the the limits it places on PTZ tracking
is discussed. Finally, the tracking and image capture of a MAV in flight is presented and

shown to correspond to the predicted camera aiming performance.

4.1 Camera Calibration

Determining the 3-D location of a point based on its two dimensional position on
the photographic plane requires an accurate camera model. Typically, the parameters of
the model are solved for with a camera calibration. For a fixed-parameter camera, the
parameters can be solved for by taking 8-12 images of a calibration grid and performing
a bundle adjustment using photogrammetry software such as PhotoModeler. However,
as stated before, many of the camera calibration parameters are functions of the zoom,
focus, and aperture of the lens, and so a new camera model is needed for every com-
bination of these settings. This dependence poses a significant problem to the designer
of a photogrammetry system which allows the zoom and focus settings to change freely
throughout a sequence of images. The calibration parameters must be derived as a

function of a known value, such as the zoom and focus settings.

4.2 Development of Parameter Curves

For the DTM system, empirical functions were developed for the camera model
parameters based the calibration data from many lens conditions. This method for cali-
brating the pan-tilt-zoom cameras is a modified version of the approaches in References
[10] and [12], which were described in section 2.1.3. In both papers, the camera pa-
rameters which were determined have the greatest effect on the photogrammetry results
and to be the easiest to model were the principal point location (zg, yo), first distortion

parameter ki, and focal length f.
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The camera parameters chosen for this model were f, ki, and ks. These parameters
were chosen primarily for the ease with which they could be modeled. Their values as
a function of zoom setting showed clear trends which enabled reliable curve fitting.
Numerous calibrations showed the values of decentering distortion parameters p; ad
po had little effect on the bundle adjustment solution and usually were automatically
removed by the calibration algorithm. Principal point parameters were held constant for

simplicity but will be considered for inclusion in future work.

The camera model is based on the model presented in section 2.1.2 and is given in

Equation 4.1

X — XL T — Xo+ dx
1
MY =Yy | =1 |y—vo+dy (4.1)
Z—Zy —f
where
dr = ki(z — 20)r? + ko(z — 0)r* (4.2)
dy = k1 (y — yo)r* + ka(y — yo)r"* (4.3)

The parameters f, ki, and ks were calculated using PhotoModeler’s self-calibration
algorithm. Twenty-two zoom and focus points in the normal operating range of the lens
were calibrated. The aperture was fixed at full dilation and was not considered for
dependence. The data showed that the parameters were a much stronger function of the
zoom setting than the focus, as was expected, and so the parameters were developed as
a functions of zoom only. Curves were fit to the data based on a weighted least squares
approximation, where the weight for each data point is the inverse square of the RMS
residual value produced by the PhotoModeler calibration. These curve fits are shown in

Figure 4.1.

These curves allow for efficient estimation of the calibration parameters from the
zoom setting, which is recorded during image capture, avoiding a lengthy self-calibration

at each time step.
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4.3 Test of Curve-fit Parameters

The performance of the photogrammetric processing with the use of curve-fit pa-
rameters was evaluated by comparing the resulting point locations with those when using
parameters generated by a partial and full calibration. This test is intended to give some
insight into the error incurred by using a less sophisticated camera model, and then

interpolating the camera parameters between calibration points.

The following metrics were used for the evaluation. The internal consistency of a
point cloud is determined by the RMS residual and tightness value. The residual gives
the two-dimensional distance of the location of the point in a particular image from
the location of the solution point generated from all the images. The tightness value is
similar, but is the 3-D distance from the particular image point to the solution point.
Absolute point accuracy was measured against the “truth” point cloud generated from
fully calibrated parameters. The RMS point error was calculated in each direction as well
as the total RMS error. Since photogrammetric accuracy is dependent on the resolution
of the object in the image, the error is also written as a ratio of the approximate height
of the image, 500 mm. Therefore, for this test, pixel resolution is 1:1000, and millimeter

resolution is 1:500.

Comparisons were made at three zoom and focus settings within the DTM envelope
shown in Figure 3.12. At each setting, a set of images were taken of the calibration grid
like the one shown in Figure 4.2 and described in Table 4.1. All pictures were taken with
one PTZ camera. The calibration grid was rotated between images and the PTZ camera

was held fixed.

The vantage points for the images for lens condition one is shown in Figure 4.3.

Condition two and three had similar configurations at increasing distance, except at

Table 4.1:  Data on the calibration grid used in the curve-fit tests

no. of points 144
no. of coded points 4
length of side 536 mm

approx. scale factor 0.5 mm /pixel
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Figure 4.2:  PhotoModeler calibration grid. 8-12 images of the grid from different
angles are processed to generate calibration parameters at a specific lens setting.

condition three the four images with the highest angle of incidence were removed because
they interfered with the stability of the calibration. Twelve images were used at the short

and medium focal length, and eight were used at the long focal length.

Three point clouds were generated at each lens condition using the same image set.
All points were subpixel marked in each image for maximum accuracy. The first point
cloud was generated by performing a full calibration, which calculates camera parameters
and point locations for the grid. The full calibration allowed PhotoModeler to decide
which camera parameters to include to give the best result. The camera parameters
included were f, k1, ko, 29, and yo. The second point cloud was generated with a partial
calibration which held fixed the principal point and solved for f, ki, and ky. The third
point cloud was generated using curve-fit calibration parameters and the same principal
point as the partial calibration. The value at which the principal point was fixed was the
average of three values from prior calibrations at the zoom settings. The three sets of
points will be referred to as the full calibration (FC) point cloud, the partial calibration

(PC) point cloud, and curve-fit parameter (CP) point cloud.

Tables 4.2, 4.3, and 4.4 show the results at the three zoom settings. The first
thing to notice is that the PC point cloud had similar and sometimes better residual and

tightness than the FC point cloud. This is an encouraging result, since it indicates that

45



L
»

Not used at
. fNrthest distance
N \
8

3 .

<
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the upper limit of the internal consistency of the reduced camera model is as good as
that of the full camera model. Internal consistency is therefore solely a function of the

quality of the curves that are fit to the parameter values.

Accuracy of the PC point clouds decrease with increasing focal length, but since the
full and partial calibrations are of similar internal consistency, it is questionable whether
the full calibration produced significantly more accurate point locations to be considered
“truth”. Only large differences in the comparison of tightness value between point clouds
can be considered an indication of relative accuracy. An independent measurement of

the point locations should be considered for a more reliable comparison of accuracy.

The CP point cloud showed a significant decrease in tightness compared to the PC
and FC point clouds. Accuracy was on the order of a pixel. This is a relatively low value
for point accuracy in comparison with general photogrammetry, (see Reference [10]),
although it would still be acceptable in certain cases. The low accuracy and tightness

is most likely caused by a poor focal length curve-fit. This is indicated by the fact that
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the tightness of the CP point cloud improved at higher zoom setting and lower percent

difference between the curve-fit and calibrated focal lengths.

As further evidence of the need to improve the focal length curve, consider the
residual directions for the images used for processing lens condition one. Figure 4.4
shows the residuals for the PC point cloud, which do not exhibit a strong pattern that
would indicate poor modeling. Compare that to Figure 4.5. The images with lower
incidence angles (image 9, 10, 11, and 12, the bottom row) clearly show that point
calculations for those images were less trapazoidal than the overall point locations. This
is caused by the camera having been calculated to be farther from the grid of points than
it actually was, which in turn caused it to expect less of a perspective angle than was
actually the case. The distance of the camera is calculated from the focal length, and a

larger focal length is equivalent to larger distance.

The poor focal length curve fit is a correctable problem. Additional calibrations can
be taken with special attention to the consistency of the parameters at each zoom setting.
Instead of weighting the calibration results, fewer calibrations should be performed with
a emphasis on low residuals and tightness. The performance of the partial calibration
indicates that high accuracy and tightness are possible with this camera model, and an
improvement of the focal length curve-fit will be a step in the right direction. Though the
current curve-fits are not optimal, the results of this test indicate that this is a suitable

approach for calibrating the PTZ camera system in a dynamic environment.

The previous test showed the accuracy of the calibration curve fits under a con-
trolled situation with twelve images. The test shows the upper limits of accuracy with
the current system. An actual image capture, however, will be taken with multiple cam-
eras, and will have only four images to process. The image viewpoints, which have a

significant impact on point accuracy and precision, will not be able to be controlled.

To demonstrate a photogrammetry project under these circumstances, the follow-
ing example was performed. A flat board was covered with coded photogrammetry
targets and four point clouds were generated using calibrated cameras and good viewing
angles. These point locations were averaged and considered truth. The truth surface

was compared to four additional point clouds. The comparison clouds were generated
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Table 4.2:  Comparison of point cloud data at lens condition 1

Lens Condition 1
Zoom Setting — 25700, Focus Setting — 21673

Full Calibration Partial Calibration Curve-fit Parameters

£ (mm) 927.8874 927.9101 32.65
o Ky -2.059¢-3 -2.097¢-3 -2.298¢-3
Pamerat ks -2.487¢-5 -3.855¢-6 2.852¢-6
arameters . 2.9733 2.9772 2.9772
%o 2.4870 2.4802 2.4802
RMS residual (pixels) 0867 0878 87
—_ mm 131 128 1.38
1EHLNEss ratio 1:4000 1:4,000 1:400
mm 0306 595
RMS error ratio 1:18,000 1:900
00927 0927
EMS te:“"orl 0117 145
frectiona 0267 569
Table 4.3:  Comparison of point cloud data at lens condition 2
Lens Condition 2
Zoom Setting — 31993, Focus Setting — 27349
Full Calibration Partial Calibration Curve-fit Parameters
£ (mm) 37.8998 37.9645 41.2521
o key -2.112¢-3 -2.102¢-3 -1.966e-3
Pamerat ks 1.870e-5 1.623e-5 6.991e-6
arameters . 2.981 2.9772 2.9772
n 9.4821 2.4802 2.4802
RMS residual (pixels) 1213 1034 A1
Tioht mm 186 1456 618
1EHANESS ratio 1:3000 1:4,000 1:900
mm .0700 284
RMS error ratio 1:8,000 1:2,000
0108 0737
EMS t‘?rmrl 0123 0794
trectiona 0680 1190
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Table 4.4:  Comparison of point cloud data at lens condition 3

Lens Condition 3
Zoom Setting — 38702, Focus Setting — 33026

Full Calibration Partial Calibration Curve-fit Parameters

 (mm) 52.4612 52.6104 56.6318
Camera ky -2.053e-3 -1.997e-3 -1.664e-3
. ) ks 1.431e-5 1.44%¢-5 1.22¢-5
arameters . 2.9758 2.9772 2.9772
n 2.4778 9.4802 9.4802
RMS residual (pixels) 1213 .1089 30
S mm 1189 1319 3542
lghth ratio 1:3000 1:4,000 1:1,500
mm .1542 7294
RMS error ratio 1:4,000 1:700
0682 495
EM@if?o; 1277 449
frection 0530 11949

using all four PTZ cameras on the outside of the room and the photogrammetry object
placed in the center. Four images of the object were taken for each point cloud, and
the object was rotated 90° between each set. Each set was processed using curve fit
calibration parameters and the error for each point is shown in Figure 4.6. In order to
observe internal error alone, the point clouds were corrected for errors due to translation,
rotation and scaling by minimizing the error with respect to those parameters, and the
corrected error values also are also shown in Figure 4.6. These corrections were small,
with translations, rotations, and scale factors less than 0.5 mm, 1°, and 1% respectively.
Note that the error in positions 1 and 3 are approximately double that of 2 and 4, and
since the object was rotated 90° between positions, positions 1 and 3 were in similar but
reverse orientations. In these positions, the object was in a less favorable orientation,
with the majority of the markers at a shallower angle than in positions 1 and 4. The
transformed error normalized by the object length is approximately 1:400 for positions

2 and 4, and 1:200 for positions 1 and 3. Thus it can be see that image orientation of
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the images can have a negative effect on the point cloud accuracy. More information on

the effects of object orientation and can be found in reference [6].

The results of the curve fit calibration parameters test indicate the viability of using
even very basic curve-fitting for generating calibration parameters. Point clouds gener-
ated under operational conditions show additional loss of accuracy, but it is supposed
that this will improve with improved curve fits. Refinement of the curve fit calibra-
tions will be the subject of future work. The use of this method allows the generation
of calibration parameters on a continuous scale, and is key to enabling the use of the

pan-tilt-zoom cameras for dynamic photogrammetry.

4.4 Validation of Image Synchronization

For dynamic reconstruction of objects in motion to be accurate, it is important
that each set of four images be synchronized. The synchronization system described
above was validated with the following test. A sequence of images was captured of a
small direct current electric motor running at approximately 11 revolutions per second.
Attached to the motor is a paper “fan” with a drawing on one side, so that its orientation
can be determined. The trigger signal was run at 500hz and the cameras were set up to
capture images on the rising edge of the signal. The four images in Figure 4.7 are image
352 of each of the sequences, and although the fan image is not sharp due to the exposure
time, the darker area caused by the drawing on the left side shows that it has the same
orientation in each of the images. This assures that the system has the capability of
synchronous image capture to within one frame. However, by analyzing the blur of the
fan tip and noting its beginning and end in each photo, it appears to be even better than

that.

4.5 Validation of Tracking System

The tracking system has two parts: the camera aiming, accomplished by the gimbal,
and the focus and zoom, controlled by the lens. Each are controlled with separate loops
in the PTZ controller software as described in section 3.6, and they both pose limits on

the ability of the PTZ cameras to produce suitable images for photogrammetry. The
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(a) Camera 1 image (b) Camera 2 image (c) Camera 3 image (d) Camera 4 image

Figure 4.7:  The four high-speed cameras capturing synchronous images at 500fps. Note
that the spinning paper “fan” has the same orientation with respect to the mounting
platform in each image.

following section describes the tests run to evaluate the capabilities of the gimbal and

its effects on camera aiming. The lens analysis was not performed for this thesis.

Total camera aiming error is the result of several factors. Static pointing error
results from approximations made in the aiming algorithm and camera location and ori-
entation error. Dynamic error is mostly caused by the gimbal dynamics, with additional
dynamic error caused by time lag from the videogrammetry system, control software,
and serial communication. As a first step in determining and reducing the error caused

by each of these factors, the total aiming error was evaluated.

Initial validation of the aiming system was performed by tasking the camera to
track a videogrammetry object attached to the rotation table in Figure 3.4. The ob-
ject maintained its orientation as it spun, and four coded photogrammetry targets were
placed on the side facing the camera. The coded targets are round markings that are
automatically marked and referenced between frames by the photogrammetry software.
One target was placed at the aiming point, and the others were placed near the x and y

axis limits of the object for scaling purposes.

The regular motion of the rotation table allowed the position and orientation of the
tracked object to be known in each frame without synchronizing the image capture with
the videogrammetry system. This allowed any delay in the processing of the videogram-
metry data to be included in the error assessment. The radius and center of the circular

path was determined by the least squared error of the center to the position minus the
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radius squared
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eep =) (2 —2)* + (g —§)° = *)? (4.4)

i=1
where e, is the circle fit error, x; and y; are positions generated by the videogrammetry
system, and z, ¢, and 7 are the center location and radius. The radius 7 can be written

in terms of the other variables

and using the notation z to designate the mean, & and y can be solved for from two

simultaneous equations
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The turntable was rotated at a constant speed using motors and a belt drive, and an
LED! was triggered to flash when the object passed a certain point in the rotation. The
LED flash could be seen in the PTZ camera as it tracked, which allowed the period and
phase of the rotation to be determined directly from the images. The period, phase, and
radius of the rotation table was used to generate the function for the continuous periodic

truth input to which the tracking error and output was compared.

Fifteen tracking tests were run; six rotating the table in each direction at a distance
of 2.5 m and speeds ranging from 0.2 m/s to 0.9 m/s, and three at approximately 0.55
m/s and increasing distance to a maximum of 4.25 m. During each test the PTZ camera
captured a sequence of images at 30 frames per second and in each image the distance
between the target point and the image center was measured in pixels, as shown in Figure

4.8. The additional scaling targets were used to determine a pixel to mm scale factor

Hight-emitting diode
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in each direction for each image. The millimeter error summed with the truth function

produced the output of the camera system.

The motion of the object was separated into its x and y components, with x
component of motion tracked by the azimuth servo of the gimbal and y component by
the elevation servo. The millimeter error in each direction was measured and Figure
4.9 shows the results plotted versus object speed in meters per second. RMS values
in the y direction are lower than the = because the angle of view causes the velocity
perpendicular to the camera vector to be reduced. Test points marked by diamonds

were run at distances greater than the 2.5 m, with the farthest distance being 4.25 m.

The fact that the diamond-marked points lie on the same curve as the other points
indicate a minimal dependence of the millimeter tracking error on distance. This is
because of the counterbalancing of the effects of angle error and angular velocity of the
tracked object about the gimbal. At close range, the gimbal is required to rotate faster
in order to track an object at a given speed than at a farther distance, thus causing a
larger angular error. However, a large angular error at close range results in a smaller
linear error at the object than when further away. Thus, the two effects cancel each
other. Additional testing may show that the cancellation is not perfect, especially at

extremely close and far distances, but in the lab capture volume it holds well.

The RMS angular error of the gimbal was found using the center of the rotation
table as the average distance to the object. The RMS angular velocity of the gimbal
required by the speed of the rotation table was calculated as shown in Equations 4.7 and

4.8

Waz = V2ud (4.7)
we = V2sin(¢)vd (4.8)

where v is the speed of the rotation table, d is the distance from the gimbal to the center
of the rotation table, and ¢ is the camera angle of incidence. The angular error was

plotted against the angular velocity and is shown in Figure 4.10
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Figure 4.8:  Camera aiming error is measured in pixels from the center image pixel to
the coded target on the box.
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Figure 4.9:  RMS mm error vs speed of rotation table. Points marked with x’s were
tested at 2.5 m from camera. Diamond points indicate tests run at increased distances.

Two notes should be made about the data. There is clearly more angular error in
the elevation axis than the azimuth axis shown in Figure 4.10(b). This is most likely
caused by the camera not being perfectly balanced on the gimbal, so that the gimbal has
to overcome the effects gravity in addition to inertia when rotating to point downwards.
The additional moment required by the gimbal in that direction slows the overall response
time. Secondly, the drop in error for the final data point in Figures 4.9(a) and 4.10(a)
are due to data dropout rather than a true reduction in error. At the peak amplitude
and the highest turntable speed, the scaling targets were outside the field of view of

the camera, and so no millimeter error could be calculated. When the RMS error was
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Figure 4.10:  RMS Angular error vs. RMS angular velocity of gimbal. Points marked
with x’s were tested at 2.5 m from camera. Diamond points indicate tests run at increased

distances.

calculated for that point, the lack of the highest error data artifically reduced the RMS
value. Nonetheless, this point was included for completeness, as it is included in the

following phase shift analysis (where the data dropout does not effect the result).

The phase shift and magnitude change were calculated by fitting the output data
to sinusoidal curves using a least squares method and then comparing its magnitude and
phase to the truth input. Figure 4.11 show the resulting Bode plots.

The Bode plots will provide a valuable data source for modeling of the system
dynamics. Future efforts to improve the aiming performance, such as adding a Kalman

filter, will require a model of the system.
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Increasing speed has the effect of reducing the resolution of the cameras by limiting
how small a field of view can be used. For the ideal case, with perfect zoom and focusing
such that the object remains the same size in all images, the number of pixels per unit
length would be fixed, and the value would depend on the anticipated speed of the
object. The object resolution, n, pixels/object radius, is related to the maximum speed
and radius of the object in the ideal case by

o m/2 (4.9)

Ne = ) Tobj

N Tobj + €mm (v
where n,, is the number of pixels across the shortest dimension of the image plane, 74, is
the half the largest dimension of the object, and e, (v) is the RMS millimeter tracking
error at speed v. Using current laboratory cameras with 1280x1024 resolution, and a
typical object radius of 15 c¢m, the plot in Figure 4.12(a) was constructed. The plot
indicates an expected decrease in resolution of the object speed increases. A second plot
in Figure 4.12(b) shows the object resolution plotted vs. length of the object, and shows
that larger objects can be covered with more pixels than smaller ones, even though the

pixel/unit length value may decrease.

The camera aiming system described above is capable of keeping vehicles in the
frame under the given restrictions of speed and resolution. To take a typical example, an
object of 15 cm radius with a desired pixel resolution of 1.7 pixel/mm would be limited
to speeds less than 0.9 m/s. The system generally favors large, slow moving vehicles,
because it is able to cover these vehicles with more pixels per object size. There are
several ways in which this system could be improved. One is the addition of a Kalman
filter, which uses predicted future position of the object to improve aiming accuracy.
Another possibility is to use a custom gimbal controller that puts a greater premium on
error reduction, at the expense of such effects as overshoot. The gimbal is capable of
using a custom controller, which is important for continuing development of the tracking

system.
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4.6 Tracking Example: Helicopter

To demonstrate the tracking system, a sequence of images was captured of a MAV
in flight. The MAV is a radio-controlled helicopter with two couterrotating rotors and two
smaller maneuvering rotors shown in Figure 4.13. The helicopter was marked with 6 mm
retroreflective videogrammetry targets and defined as an object in the videogrammetry
software. All four PTZ cameras were set to track and image the helicopter as it was flown.
The field of view was set in the PTZ controller at 0.5 m. Nine hundred synchronous
images were taken at 30 fps with a shutter speed of 5 ms, for a total capture time of 30

seconds.

The location of the helicopter was recorded during image capture. The location
data at several time steps is missing, however, because at those time steps the videogram-
metry system had lost the helicopter. This occurs at only a small number of locations,
and the gaps are clearly visible in the location and speed plots. This problem was caused
by using a calibration of the videogrammetry system that was several days old. A new

calibration would reduce and possibly eliminate data dropout.

The x and y location of the helicopter is shown in Figure 4.14, and the z location
is plotted with respect to image number in Figure 4.15(a). A rough plot of the instanta-
neous speed of the the helicopter is given in Figure 4.15(b). The speed was calculated by
taking the backwards-difference of the position measurements and dividing by the time

interval, shown in Equation 4.10.

0 = |[-’E“yz,2’z] - [xi—layi—hzi—l” (4'1())
by —ti1

The time interval was varied until a value was found that appeared to be a good balance

between resolution and noise reduction.

The helicopter began on the ground, and was flown smoothly to altitude. At
approximately image 510 the helicopter lost altitude rapidly and hit the ground, then
recovered after a low sweeping turn. This area is circled in Figure 4.14 and the drop and
speed increase is clearly visible in Figures 4.15(a) and 4.15(b). The helicopter recovered

altitude slowly and the capture ends in mid-flight.
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Figures 4.16 and 4.17 show an excerpt of 30 images from the 900 image sequence
from camera four. The images are at one-second intervals and the image number is
listed below each. During the initial ascent, with speed peaking at about 0.8 m/s, the
helicopter remains in view of the camera. At image 540, the helicopter is completely
outside the camera frame, and does not fully recover until image around 600. The loss
of the vehicle occurs during the high-speed descent, when a speed of approximately 1.8

m/s is reached.

The helicopter remains in focus until the end of the sequence, around frame 780
to 810. As this occurs while the helicopter is moving relatively slowly away from the
camera, the lens is likely the limiting factor in the speed at which objects can be tracked.

A thorough analysis of the lens is needed to determine what that limit is.

This example shows the ability of the tracking system to maintain focus and framing
of a flying vehicle. The performance of the system during the capture is shown to
generally match the predicted performance in the previous section. This system will
provide an effective means of gathering images suitable for photogrammetry in a dynamic

environment, a unique capability.
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Figure 4.13:  Twin rotor helicopter used in example capture
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Figure 4.16:  Images of helicopter from camera 4 at one second intervals

64



-

(i) 840 (j) 870

Figure 4.17:  Images of helicopter from camera 4 at one second intervals
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V. Conclusions and Future Work

5.1 Conclusion

‘ | \H1S thesis developed and evaluated a hybrid DTM system for collecting kinematic
measurements of structural surfaces in motion. The system will provide unique
data sets on objects such as MAVs in flight and deployable space structures that will aid

in the design and development of these systems.

The system components were described, and details were given on the control and
integration of the cameras. Calculation of the azimuth and elevation angles for the
gimbals was presented. Multiple methods of locating the cameras were presented and
compared, and location by the videogrammetry system was shown to be the preferred
method because of its ease of use and robustness. The method of calculating the zoom
and focus settings to maintain a constant field of view was developed and the envelope
of the zoom and focus was outlined. The tracking system was combined and controlled

in a computer program and details of its operation were addressed.

Several test of the system were performed to evaluate performance and find areas
needing improvement. The tests were: analysis of the use of curve fits for calibration pa-
rameters, demonstration of camera synchronization, analysis of dynamic camera aiming

error, and a demonstration of the system tracking and taking images a MAV in flight.

Using curve fit parameters for dynamic photogrammetry is a novel technique. The
technique was tested to determine if it would produce accurate and precise point clouds.
Point clouds generated with curve fit calibration parameters were compared to those gen-
erated with partial and full calibrations. The resulting curve fit point clouds were found
to have an accuracy around 1 unit error per thousand (1:1,1000), which is equivalent
to pixel-sized error, and RMS residual around 0.5 pixels. The focal length parameter
generated by curve fit was significantly higher than those generated by partial and full
calibrations, and analysis of the residual directions indicates that the focal length curve
fit is the primary source of point error and low precision. The reduced camera model
that was used was shown to have comparable precision to the fully calibrated cameras.
This result indicated that with improvement of the curve fits, especially the focal length

curve fit, accuracy of around 1:10,000 can be expected.
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Camera synchronization was established by taking a capture with all four cameras
at 500 fps of a rotating motor. The motor was shown to be in the identical orientation

in each camera, indicating that all four images were taken synchronously.

The dynamic camera aiming error was evaluated and found to be within reasonable
limits. The dependence of maintaining view of an object on the object speed and the field
of view was described, and the relationship between object speed and allowable object
resolution was presented. It was shown that speeds approaching 0.9 m/s are attainable
with 1.7 pixel/mm resolution and 15 cm object. As an example of the tracking system
in operation, a sequence of images of a MAV flying in the lab was shown. The system
was able to frame and focus on the vehicle throughout most of the 30 s flight, and the

performance of the system approximately followed the predicted performance.

Based on the results shown here, this photogrammetry-based hybrid DTM system
is capable of tracking and recording the necessary image data for generating surface
profiles of lightweight dynamic structures. The hybrid measurement concept that this
system is based on overcomes the limitations of the individual systems and allows a new
look at the behavior of lightweight structures. It has the potential to be expanded by
adding additional sensors along with the PTZ cameras, such as laser vibrometers and
laser range finders. In conclusion, the measurement system presented in this thesis has
the capability to give researchers new insight into lightweight structures in a natural
environment, and the possibilities offered by the hybrid measurement approach are only

just beginning to be explored.

5.2 Future Work

Future work on the DTM system will focus on finishing the characterization of
the system with an analysis on the lens and the limitations it places on object tracking.
Lens analysis will include determining how quickly the lens can adjust zoom and focus,
and how focus error affects the photogrammetric processing. Additional improvement
of the system with a custom designed closed loop gimbal controller has the potential
to reduce aiming error. Improvement of the curve fit parameters will likely increase

photogrammetric accuracy.
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Since the purpose of the system is the photogrammetric reconstruction of objects
in motion, methods of automating the processing of image data are needed. Generating
surface profiles is currently a labor-intensive process, and manual processing of poten-
tially thousands of frames of image data is not practical. Initial steps have been taken
in automating the processing such as controlling the photogrammetry software with a

computer script, and future work will build on this start.
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